7,089 research outputs found

    Propagation of High-Frequency Electromagnetic Waves Through a Magnetized Plasma in Curved Spaces-Time. II. Application of the Asymptotic Approximation

    Get PDF
    This is the second of two papers on the propagation of high-frequency electromagnetic waves through an inhomogeneous, non-stationary plasma in curved space-time. By applying the general two-scale W.K.B. method developed in part I to the basic wave equation, derived also in that paper, we here obtain the dispersion relation, the rays, the polarization states and the transport laws for the amplitudes of these waves. In an unmagnetized plasma the transport preserves the helicity and the eccentricity of the polarization state along each ray; the axes of the polarization ellipse rotate along a ray, relative to quasiparallely displaced directions, at a rate determined by the vorticity of the electron fluid; and the norm of the amplitude changes according to a conservation law which can be interpreted as the constancy of the number of quasiphotons. In a magnetized plasma the polarization state changes differently for ordinary and extraordinary waves, according to the angle between the wavenormal and the background magnetic field, and under specified approximation conditions the direction of polarization of linearly polarized waves undergoes a generalized Faraday rotation

    A proposal to extend our understanding of the global economy

    Get PDF
    Satellites acquire information on a global and repetitive basis. They are thus ideal tools for use when global scale and analysis over time is required. Data from satellites comes in digital form which means that it is ideally suited for incorporation in digital data bases and that it can be evaluated using automated techniques. The development of a global multi-source data set which integrates digital information is proposed regarding some 15,000 major industrial sites worldwide with remotely sensed images of the sites. The resulting data set would provide the basis for a wide variety of studies of the global economy. The preliminary results give promise of a new class of global policy model which is far more detailed and helpful to local policy makers than its predecessors. The central thesis of this proposal is that major industrial sites can be identified and their utilization can be tracked with the aid of satellite images

    Effect of fuel properties on performance of a single aircraft turbojet combustor

    Get PDF
    The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and NOx, as well as liner temperatures and smoke. At the simulated idle condition no significant differences in performance were observed. At cruise, liner temperatures and smoke increased sharply with decreasing hydrogen content of the fuel. No significant differences were observed in the performance of an oil-shale derived JP-5 and a petroleum-based Jet A fuel except for emissions of NOx which were higher with the oil-shale JP-5. The difference is attributed to the higher concentration of fuel-bound nitrogen in the oil-shale JP-5

    Cosmology With A Dark Refraction Index

    Full text link
    We review Gordon's optical metric and the transport equations for the amplitude and polarization of a geometrical optics wave traveling in a gravity field. We apply the theory to the FLRW cosmologies by associating a refraction index with the cosmic fluid. We then derive an expression for the accumulated effect of a refraction index on the distance redshift relations and fit the Hubble curve of current supernova observations with a non-accelerating cosmological model. We also show that some observational effects caused by inhomogeneities, e.g. the Sachs-Wolfe effect, can be interpreted as being caused by an effective index of refraction, and hence this theory could extend to other speed of light communications such as gravitational radiation and neutrino fluxes.Comment: 21 pages, 3 figure

    Heat transfer in a 60 deg half-angle of convergence nozzle with various degrees of roughness

    Get PDF
    Heat transfer in convergent-divergent nozzles with different values of wall roughnes

    Choked flow of fluid nitrogen with emphasis on the thermodynamic critical region

    Get PDF
    Experimental measurements of critical flow rate and pressure ratio for nitrogen flowing through a nozzle are presented. Data for selected stagnation isotherms from 87.5 to 234 K with pressures to 9.3 MN/m2 are compared to an equilibrium model with real fluid properties and also a nonequilibrium model. Critical flow pressure ratio along an isotherm tends to peak while the flow rate indicates an inflection. The point is closely associated with the transposed critical temperature and represents a change in the fluid structure

    Prediction of local and integrated heat transfer in nozzles using an integral turbulent boundary layer method

    Get PDF
    An empirical modification of an existing integral energy turbulent boundary layer method is proposed in order to improve the estimates of local heat transfer in converging-diverging nozzles and consequently, provide better assessments of the total or integrated heat transfer. The method involves the use of a modified momentum-heat analogy which includes an acceleration term comprising the nozzle geometry and free stream velocity. The original and modified theories are applied to heat transfer data from previous studies which used heated air in 30 deg - 15 deg, 45 deg - 15 deg, and 60 deg - 15 deg water-cooled nozzles

    STS-1 mission contamination evaluation approach

    Get PDF
    The space transportation system 1 mission will be the first opportunity to assess the induced environment of the orbiter payload bay region. Two tools were developed to aid in this assessment. The shuttle payload contamination evaluation computer program was developed to provide an analytical tool for prediction of the induced molecular contamination environment of the space shuttle orbiter during its onorbit operations. An induced environment contamination monitor was constructed and tested to measure the space shuttle orbiter contamination environment inside the payload bay during ascent and descent and inside and outside the payload bay during the onorbit phase. Measurements are to be performed during the four orbital flight test series. Measurements planned for the first flight are described and predicted environmental data are discussed. The results indicate that the expected data are within the measurement range of the induced environment contamination monitor instruments evaluated, and therefore it is expected that useful contamination environmental data will be available after the first flight
    • …
    corecore